일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- GA4
- 명상
- GA
- 감사인사
- 독서
- 데이터 분석
- 티스토리
- 벚꽃개화시기
- 프로그래머스
- 영화 올드 줄거리
- 미라클 모닝
- 얼음여왕
- 기사스크랩
- 6시 기상
- 벚꽃
- 코오롱베네트
- 코딩
- 채용공고
- Python
- 알파줄거리
- 수명예측 인공지능
- ㅂㅂ
- 구글애널리틱스4
- 구글애널리틱스
- 데이터문해력
- Google Analytics
- 니다
- Today
- Total
목록분류 전체보기 (459)
Data Analyst KIM
WITH cnt AS ( SELECT * , COUNT(HOST_ID) OVER (PARTITION BY HOST_ID) AS cnt FROM PLACES ) SELECT ID , NAME , HOST_ID FROM cnt WHERE cnt >= 2 ORDER BY ID
SELECT i.REST_ID , i.REST_NAME , i.FOOD_TYPE , i.FAVORITES , i.ADDRESS , ROUND(AVG(r.REVIEW_SCORE),2) AS SCORE FROM REST_INFO i INNER JOIN REST_REVIEW r ON i.REST_ID = r.REST_ID WHERE address LIKE '서울%' GROUP BY REST_ID ORDER BY SCORE DESC , FAVORITES DESC
오늘은 직무 분석의 중요성을 알려주셨다. 직무를 정확히 이해하고 자소서를 작성할 때 녹여낼 수 있는 방법을 알려주셨다. 채용공고에서 담당 업무의 순서대로 자소서를 작성해라. 각 항목별 뉴스 검색을 통해서 현장의 용어를 찾아내라.
하반기 공채인 만큼 몸과 마음이 바쁘고 불안함이 가득하지만 은행잎을 주우면서 내 불안을 버렸다. 앞으로도 자원봉사를 하면서 내 불안을 버리자!!
전이 학습(transfer learning)이란? 여러 방법 중에서 수 만장에 달하는 기존의 이미지에서학습한 정보를 가져와 내 프로젝트에 활용하는것 전이 학습 방법 먼저 대규모 데이터 셋에서 학습된 기존의신경망을 불러옴 CNN 모델의 앞쪽을 이 신경망으로채움 뒤쪽 층에서 나의 프로젝트와연결함 이 두 신경망이잘 맞물리게끔미세 조정(Fine tuning)을하면 됨 전이 학습 사용하는 이유 데이터 셋 부족의 해결 비용 절감 학습에 필요한 인력 감소 전이 학습 : 치매 환자 분류하기 from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import Input, models, layers, optimizer..
현실에서 데이터 셋이 부족하여 학습의 정확도가 높지 않은 경우가 많다. 이럴 경우 이미지를 증강하여 데이터 셋을 늘리는 방법을 사용할 수 있다. 이미지 증강은 지도 학습인데 지도 학습의 성능을 향상시키기 위해서는 수 많은 정답지가 필요하다. 따라서 이미지 증강을 통해 현실에서 적은 데이터의 양을 늘려서 학습을 시켜보자. 이미지 증강 기법은 원본 이미지를 회전시키거나, 뒤집거나, 자르는 등의 방법을 통해 새로운 이미지를 생성한다. 이미지를 자르거나 섞는 방법으로 만들어진 이미지는 모델의 과적ㅇ합을 막아주는 중요한 역할을 한다. 단, 너무 많은 증강 기법을 사용하면 학습 시간이 늘어날 수 있기 때문에 불필요하게 많이 생성하면 안된다. 주어진 데이터의 특성을 잘 파악해서 사용하는 것이 효과적이며 학습 데이터 ..